How close are you to our drone?

Tijn Dieker & Suzanne Blokland
Blue Jay Eindhoven

Drones have the power to extend our senses and actions. However, the real potential of drones is still subject to experimentation and exploration. Blue Jay Eindhoven is a student team that explores the potential of drones assisting people. Blue Jay focuses on autonomous drones that can cooperate with humans in a safe, interactive, and helpful way. Every component of the drones Blue Jay develops is designed with the user in mind because we want to create a product that can be easily adopted by our users. We do not expect our users to be experienced with drones, so the drone should be easy to use by everyone. For this, we have performed user tests with our current drone. These user tests focused on the basis of a drone: flying. How comfortable are people when a drone is flying near them?  We believe drones will become part of people’s daily lives. Important questions will arise, such as ‘what height and distance are appropriate?’, ‘What are the strengths of our current design?’ and ‘how is the drone perceived?’. Before the drone can be used in social situations, these questions need to be answered and improvements need to be made.

The drone

The drone: Blue Jay 1 with a dacron safety ring and a screen to display the eyes. Sonars and hardware are also visible.

Our drone does not look like every other drone as you can see in the picture. Our drone is a quadcopter of about 50 cm in diameter. The propellers are protected by the outer ring. The drone is still fairly loud, producing a noise of about 80 dB. Our drone also has eyes to make it look more friendly and less like a machine.

The experiment

Setup of the experiment: the drone is flying towards the participants. The participant can tell the pilot to stop the drone at any moment.

How the drone is perceived and when people feel comfortable around it depends on the way it behaves. A good measure of how comfortable people feel around the drone is how close they allow the drone to fly. So, how did we find out how close the drone can fly to a person without them feeling uncomfortable or threatened? For this, we performed qualitative research with eleven participants. The drone took off at a distance of 11.5 meters from the participant. The drone was flying slowly but steadily towards the person at eye height, and he or she could tell the pilot to stop the drone at any moment. We measured this distance and asked the participant why they wanted the drone to stop at that distance. The drone then flew higher and lower and we asked the participants when they felt more at ease and safer. After this, we asked the participant about their feelings during the experiment. Additionally, we decided that the drone should not come closer than 150 cm to the participant for safety reasons.

The results

The user tests gave us useful insights into the drone. First of all, 35% of the participants were confident enough that the drone worked perfectly and would have allowed the drone to come even closer than the recommended 150 cm. Most people, however, wanted the drone to stop earlier. When the drone flew too close to the participants they interpreted it as threatening and they no longer felt safe: “I felt like there was a chance that the drone might hit me”. Another useful finding was that most people experienced the sound of the drone as dissuasive. It is uncomfortable and disturbing: “It is the first thing you notice when the drone is flying”.

All but 2 out of the 11 participants thought the drone was most threatening when it was flying at eye level. When it flew lower people were more comfortable. One participant said “My legs are less important than my head”. Others said similar things or just that it felt less threatening. When it flew higher, the participants were also more comfortable. Most of them said this was simply because the drone flew further away and could fly over them.

What was mentioned more often than expected is that the outer ring of the drone gives a feeling of safety. People like the fact that the mechanical parts of the drone are hidden because the sight of the mechanics is what makes them feel uncomfortable; “The propellers are not visible at first, that is nice. I think if you hide all the hardware it would be better and give a better feeling about the drone”. This suggests that using a safety ring around the drone was a good design choice. Hiding all the hardware is a good improvement for the next drone. Besides the safe feeling, people also perceived the drone as interactive and some even perceived it as friendly. Most people said the eyes are “adorable” and make the drone “human-like”.

Social drone

The user tests gave us the insight that we cannot use the drone in social situations yet. This is, however, what we want to achieve. At this moment, participants would see our drone fly as a deliverer of packages or in logistics. However, generally people are optimistic; “In the future, it is certainly possible to see a drone in the healthcare sector”. People obviously have to get used to the idea of a social drone. However, the current drone is not able to interact with people in a natural way. Changes have to be made in order to let the drone fly in situations where it can interact with people and assist them. To achieve this, Blue Jay needs to create a smaller drone, one that is quiet, able to fly stable, and never makes any mistakes.  

Since the drone is supposed to become a social robot, it is important that it acts and looks friendly and is socially accepted. In matching behaviour and appearance, the function or goal of the robot should be taken into account. Research found that only if the human-likeness of the robot is related to the function of the robot, human-likeness was perceived to be necessary. People will find it more suitable that a social robot is human-like. Since the drone has to fly in social situations, it is important to make it look and feel human-like.

Next steps

All in all, we found a lot of options for improvement of our next drones. A surprising and useful finding is that most people do not want the drone to fly at eye level. One of the most important improvements to be made is to reduce the noise of the drone. Besides that, we would like to cover the top and bottom of the drone to make it look safer. This is going to be a big challenge, but at Blue Jay we strive for the perfect drone. Next to the possible improvements, we also found some strengths. The eyes of our drone make it more interactive and user-friendly than any other normal drone. Also, our drone can fly reasonably close to people without them feeling uncomfortable. Of course, our drone needs to become able to fly autonomously. While developing the autonomy, we can take the results of these user tests into account. We can try to program it in such a way that the drone knows how high it should fly and what distance to keep. This is useful for the future because we believe drones will be part of society. They will be flying in all kinds of situations, even indoors. Therefore, we will keep performing these user tests and keep improving the drones for a future where people and drones can cooperate. We will create your future drone assistant!